
NOTATION 

U) voltage; I) current; p) specific electrical resistance; T) conductor temperature; 
d) conductor diameter; R) conductor resistance; AT) temperature head; q) heat flow density; 
~) heat-transfer coefficient; i) conductor length; Nu) Nusselt number; Ra) Rayleigh number; 
@) Debye characteristic temperature; Tmp) fusing temperature; y) density; g) acceleration 
of gravity; C) specific heat; 6) volumetric expansion coefficient; q) dynamic viscosity; 
~) coefficient of thermal conductivity. Indices: 0) temperature of heat carrier; max and 
min) maximal and minimal values; int) integral with respect to the conductor's length. 
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NUMERICAL INVERSION OF A LAPLACE TRANSFORM USING A FOURIER SERIES 

TO COMPUTE NONSTATIONARY TEMPERATURE FIELDS IN LAYERED STRUCTURES 

O. V. Kanunnikov and S. L. Esaulov UDC 536.21:550.362 

An algorithm is examined for the selection and assignment of the parameter o 
of a numerical inversion of a Laplace transform with the use of Fourier series. 

In the field of structural thermal physics, significant attention is allotted to ques- 
tions of heat- and mass-transport in layered structures. This interest in multilayered sys- 
tems is explained by the fact that they permit one tomore rationally exploit the thermophys- 
ical and physical-mechanical properties of building materials. 

Examined below is the problem of determining nonstationary temperature fields in multi- 
layered building structures, situated on the ground half-space. In the general case, they 
are represented as a system of infinite plates with internal heat sources and sinks. Ideal 
contact is maintained between the layers of the structure and the ground mass, i.e., fourth- 
order boundary conditions are realized. The thermophysical characteristics of the materials 
in the layers are different. The temperature of the medium varies harmonically. The heat 
transfer conditions between the medium and the surface of the structure are subject to Newton's 
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law. With these preconditions and assumptions, the system of differential equations for 
the problem just formulated has the form [i] 

The initial conditions are: 

at x = 0 

OT~ (x, "c) = ai c3ar i (x, ~) -k --~ ( 1 )  
& c?x z c~?~ 

The boundary conditions are: 

atx=O 

r~ (x, 0) = lt~ (x). (2) 

at x = h i 

~z [Tz (0, -c) - -  T~ (I:)1 = ~,~. OTz (0, "~) ," ( 3 )  
0x 

at x = h n 

Ti (hi, "~)= Ti+l (h~, "r); 

~,~ OT~ (h~, "c) = 7.i+~ OT~+~ (h i, "~) . 
dx cLv 

(4) 

(5) 

OT~(h~, ~) O, ( 6 )  
Ox 

w h e r e  i = 1,  2 ,  3 . . . . .  n .  

A f t e r  a p p l y i n g  an  i n t e g r a l  L a p l a c e  t r a n s f o r m  w i t h  r e s p e c t  t o  t h e  v a r i a b l e  x t o  t h e  s y s -  
t e m  o f  d i f f e r e n t i a l  e q u a t i o n s  ( 1 )  and  t h e  c o r r e s p o n d i n g  i n i t i a l  c o n d i t i o n  ( 2 )  and  b o u n d a r y  
c o n d i t i o n s  ( 3 ) - ( 6 ) ,  we o b t a i n  a s o l u t i o n  t o  t h e  p r o b l e m  i n  t r a n s f o r m s  o f  t h e  t e m p e r a t u r e  
f u n c t i o n s  i n  t h e  i n d i v i d u a l  l a y e r s  [ 2 ] :  

;F~(x, s ) A ~ c h ] / /  s 1 / " - -~-  o~ 1 ~ / s == x -~ Bi sh x ~ I u~ (~) sh (x - -  ~) dL a, / ( 7 )  
a~ sc~,~ q / S 7  o 

In this problem, the derivation of closed analytical expressions for the desired temper- 
ature functions both for transforms and for inverse transforms for two or more layers presents 
significant difficulty; therefore, the transition from transforms to inverse transforms is 
done numerically. 

At the present time, several practical means to numerically invert a Laplace transform 
have been developed. These methods are based on determining the numerical values of the 
inverse transform from the corresponding values of the transforms at equidistant points on 
the real axis [3, 4]. To solve the problem, the method of numerical inversion of a Laplace 
transform via Fourier series is used [5]. The essence of this approach consists in the fact 
that the familiar Laplace integral 

7 
~F i (x, s) = ~Ti (x, x) exp (--s~) d-c (8) 

is transformed via the substitution 

where o is 

exp (---or,) = cos O, 

an arbitrary positive number. Then 

( 1 
Ti(x,  ~ ) = T i  x, 

o" 
- -  s 

2 

c~7~ (x, s) = ,i' (cos 0) ~' 
0 

(9) 

- - - - l n c o s 0 ) -  Tz(x, 0), ( 1 0 )  

- - - - 1  

sin OTi (x, O) dO. (11)  
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Performing a change of variable allows the function Ti(x , 0) to be decomposed into a Fourier 
series in sines: 

Ti(x, 0):= ~ C~msin(2m+ I)0, (12) 
m : O  

where Cim, is determined from a system of recurrence relations. 

The main interest when using this method in problems of calculating nonstationary temper- 
ature fields in semifinite layered systems is the determination and selection of the posi- 
tive parameter o. In engineering practice, as a rule, it is necessary to know the temperature 
fields in the construction elements over certain time intervals. To do this, it is necessary 
to determine Ti(x, 8) for the values 

@ = arccos [exp (--c~)]. (13) 

The numerical value of arbitrary positive o depends on the size of the interval inside 
of which it is necessary to calculate the inverse transform function. Analysis of domestic 
and foreign research into this question has shown that there is no universal algorithm for 
calculating o [6]. This limits the use of the proposed means to numerically invert the Laplace 
transform. At the same time, correctly selecting the value of o is an independent problem, 
which determines the asymptotic convergence of the solution as �9 + Tk, where ~k is the point 
in time for which it is necessary to obtain the numerical value of the inverse transform. 

The approach proposed in this article for determining the parameter o consists in esti- 
mating the total error of inverting the Laplace transform via a Fourier series as compared 
to an etalon-function, the analytic form of whose Laplace transform is known and similar 
in form to the function causing difficulty [7]. In a certain sense, the etalon-function 
is calculated by a model of some ideal process, which reflects only the basic properties 
of the structure and phenomena occurring in it. 

It should be kept in mind that the transform function for each layer of the system being 
examined can be represented in generalized form as F1(x , s), F2(x , s) ..... Fn(x, s). On 
this basis, and also from previous research of the authors, the positive parameter o will 
vary from layer to layer. 

It is assumed that the set of Ok, i, where i = i, ..., n, obtained as a result of numer- 
ical experiment, can be used to help solve similar problems of this class. For the studied 
class of problems, the known solution for calculating temperature fields in semi-finite homo- 
geneous massif can be used in the capacity of an etalon-function [i]. 

The method of determining and assigning the numerical values of the parameter o consists 
of the following: 

i. The moment of time ~k is fixed. 

2. Considering that 0 < 8 < 90 ~ , 8min = 0.0001 ~ and %max = 89.0000 ~ are given, and 

In (cos Om~.) 
O ~ m i n  ; ~ ( ~  - -  ( } ' m a x  - -  O ' m i  n 

% 100 

ln(coSOmax) . 
Gma x -- 

T h 

are correspondingly determined. 

3. By sequentially decreasing o from the value Oma x by an amount 40, we determine o*, 
for which the calculated values of the inverse transform function approach some constant 
values that differ from zero (nonsingular stable solution in the sense of [4]). 

4. On the segment [Omin, o*], by sequentially varying the value of o, we choose Ok, i 
for which the total error of the inversion at the surface of the i-th layer is no greater 
than 6max, and at the bottom of the i-th layer is no less than -6me x. The calculation is 
performed, starting with i = i. For this value of i, the problem is solved in the total 
volume for n layers, with combined second and third order boundary conditions at the surface 
of the first layer and with second order boundary conditions at the bottom of the lower layer. 
For i e 2, the problem is solved only for (n - i + i) lower layers; the first order boundary 
conditions calculated in the previous step are applied to the surface of the i-th layer. 

5. The procedure in paragraph 4 is performed sequentially for all layers. The set 
of Ok, i is obtained as a result, where i = 1 .... , n. 
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Fig. i. Algorythm for selecting and assigning the parameter 
o of the numerical inversion of a Laplace transform using a 
Fourier series. 

6. Paragraphs 1-5 are performed for all calculated points in time T k. 

The sequence of actions for determining and assigning the parameters Ok, i at the moment 
in time ~k is shown in Fig. 1 as a generalized algorithm. 

The studies conducted by the authors have shown that the error in determining the values 
of the inverse transform functions when using this method to numerically invert the Laplace 
transform is less than 5%. This kind of accuracy is acceptable for calculating nonstationary 
temperature fields in layered building structures. 

NOTATION 

o) positive parameter; 8) auxiliary variable; x, $) coordinates, m; h i ) distance from the 
surface of the structure to the bottom of the i-th layer, m; ~, ~k) time, h; Ti(x, T)) temper- 
ature of the i-th layer in the transform region; Ai, Bi, Cim are numerical coefficients; ai 
is the temperature conductivity coefficient, m2/h; mi is the power density of a heat source 
in the i-th layer, W/m3; r is the specific heat capcity, kJ/kg.~ Xi is the thermal con- 
ductivity coefficient, W/m.~ 7i is the density, kg/m3; ~ is the coefficient of heat trans- 
fer of the surface of the structure, W/m2.~ 8max is the maximum permissible error, %; Tc(~) 
is the temperature of the medium, ~ 
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